Agenda

- Mission Analysis
- Aviation Checkpoint
- Advanced Surveillance Program
- Air Cargo
- Checked Baggage
- Test & Evaluation
- Acquisitions
- Deployment
Mission Analysis Division (MAD)

Keith Goll
Division Director (Acting), Business Operations Division

Transportation Security Administration
Agenda

- Technology Screening Equipment (TSE) Segment Architecture
- Targeted Broad Agency Announcement (BAA) Process
- Transportation Security Capability Analysis Process (TSCAP)
- Technology Harmonization
- Questions?
Technology Screening
Equipment Segment
Architecture
OSC Requires a Forward-Looking Architecture

To further advance risk-based screening the Office of Security Capabilities requires a segment architecture to outline their current and future business and equipment needs to minimize acquisition risk when developing new capabilities.

The Transportation Security Equipment (TSE) Segment Architecture will outline the future security screening system, its components, and the relationships between them.

A TSE Segment Architecture will help OSC achieve:

- Enable interoperability and modularity of transportation security equipment
- Reduce the cognitive burden on TSOs, increasing their effectiveness
- Facilitate the acquisition of components instead of system suite, allowing for modular repairs and upgrades
- Assist programs in developing integrated technology roadmaps for future acquisitions
- Provide analysis to define technological requirements for future screening system
- Enable platform shift in screening capabilities
- Identify technological standards and equipment necessary to support further RBS implementation
- Develop and define risk-based functionality and automation in the screening system
- Provide common system understanding of how TSE will perform during screening and what data will be employed to make RBS decisions
The TSE Segment Architecture (TSE-SA) will define current and future screening capabilities of TSA and leverage existing architectures and methodologies, to include:

- **Business Architecture**
- **Information Architecture**
- **Applied (IT) Architecture**
- **Screening Equipment Architecture**

TSE-SA will:

- Leverage & Develop
- Leverage
- Develop

Housed in:

- E.g. TSCAP
- E.g. TSA-RK (OIA)
- OIT EA
- TSE-SA

Informed by:

- Flight-by-Flight, TSA Risk Architecture IPT
- OIT EA, TSA Risk Architecture IPT
- STIP, TSA Risk Architecture IPT
- TSCAP, Flight-by-Flight, OSC Working Group

The TSE-SA seeks to define future physical screening capabilities necessary to enable an integrated and modularized security screening system that is risk-based, efficient and effective.

DRAFT
The TSE Segment Architecture will define current and future security capabilities and provide a structured approach to develop and insert new technologies aligned to capability gaps and organizational objectives.

<table>
<thead>
<tr>
<th>Acquisition Time</th>
<th>Re-work</th>
<th>Costs</th>
<th>Risk-Based Screening</th>
<th>Quality</th>
<th>Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved planning and program integration will reduce time for acquisition</td>
<td>Engagement with stakeholders and prioritized use cases will streamline development</td>
<td>Target TSE acquisitions on more cost-efficient technologies to maximize ROI</td>
<td>Enable variability in screening by designing intelligent checkpoint & expanding pre-screening capabilities</td>
<td>Acquire and deploy equipment that meets standards based on end-to-end engagement</td>
<td>Further engage vendors and R&D centers to define and realize gains from cutting-edge technology</td>
</tr>
</tbody>
</table>

The TSE Segment Architecture will provide TSA a structure to develop new screening capabilities to further implement RBS reducing cost and increasing efficiencies.
Targeted BAA Process
The targeted BAA process was designed to lighten the burden of the submission process on vendors and TSA while focusing submissions on near-term TSA needs.

Targeted BAA Process Overview

Phase 1: Topic Identification (~1 month)
- TSA Identifies Targeted BAA

Phase 2: Solicitation (~2 months)
- TSA Announces Targeted BAA and Applicants Submit 2-5 pp Concept Paper

Phase 3: Feasibility Assessment (~1 month)
- TSA Evaluates and Selects BAA Responses for Presentation

Phase 4: Presentations (~1 month)
- Offeror Presents Concept, SOW, and Price Estimate

Phase 5: Concept Selection (~1 month)
- TSA Evaluates Submission and Notifies Offeror

Phase 6: Award (~3 months)
- SOW is Finalized and Awarded

Next Steps

FY14:
- Finalize detailed timeline for the targeted BAA process
- Identify targeted BAA topics and select initial targeted BAA topic
- Coordinate with Office of Acquisitions to release initial targeted BAA topic – *Expected in late FY14*
- Conduct Industry Day to communicate targeted BAA topic and expectations
Key Process Changes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>TSIC BAA Process (Previous)</th>
<th>New BAA Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Broad – one broad category seeking improvements related to security operations, technologies, processes, human-factors, and capabilities.</td>
<td>Focused and Broad – several specific categories describing well scoped projects seeking specific solutions with one “open” category</td>
</tr>
<tr>
<td>Responsibility for Scoping BAA Project</td>
<td>Offeror</td>
<td>TSA for focused categories and the offeror for the open category</td>
</tr>
<tr>
<td>Initial Submittal Format</td>
<td>12 page whitepaper or 28+ page full proposal</td>
<td>2-5 page concept paper</td>
</tr>
<tr>
<td>Final Funding Decision Submittal</td>
<td>28+ page technical proposal volume and cost volume</td>
<td>Oral presentation, SOW, and cost proposal</td>
</tr>
</tbody>
</table>
| Timing | • Annual
 • Offeror submissions reviewed as they come in without a specified time limit | • Semi-annual
 • Offeror submissions reviewed on a regular 6 month schedule |
| Funding Decision Authority | PMO with support from MAD | Review Board (MAD, PMO, OSO, S&T) |
TSCAP
What is TSCAP?

TSCAP will provide a structured, repeatable, transparent process to develop requirements and enhance TSA planning.

What does TSCAP do?
The Transportation Security Capability Analysis Process (TSCAP) is an integrated process that improves TSA’s development of security capability operational requirements.

What is an operational requirement?
A description of what the solution must provide in order to meet the mission need

What is a capability?
A means to accomplish a mission, function, or objective (ex. Detect IED on person)

What is the value of TSCAP?
TSCAP combines the relevant drivers for requirements into a structured method and uses a suite of tools that allow for analytic rigor and smarter decision-making.

- Establishes a stronger connection between strategic objectives and requirements
 - E.g. RBS
- Improved requirements for industry to meet
 - E.g. ATR
- Clearer understanding of system functionality and the impact of one piece not working correctly
 - E.g. CAT
Benefits of TSCAP

TSCAP’s outputs generate new value for OSC:

Holistic (Agency Level)
Conducted annually, across OSC and in conjunction with industry, to identify and prioritize gaps across the entire system and to determine requirements to close gaps.

Example:
An annual refresh of the TSCAP capability gap assessment is performed. The cross-office effort recommends higher prioritization to programs that improve analysis of passenger behavior. Both SOP and technology options are recommended for further exploration. Annual briefing to industry will describe outputs.

Program Level
Conducted in response to gaps or a specific driver to determine requirements for specific gaps.

Example:
Taking emerging technology options and identified gaps into account, CTD explores possible options with industry that are analysed using TSCAP’s architecture and visualization tools and prioritized using Decision Lens.

Specific Questions
Targeted analysis using TSCAP tools and data.

Example:
Program teams or engineers executing a program need to revisit previous analyses to determine impact of changing initial assumptions or parameters.
Intel receives new information that homemade explosives (HME) concealed in checked bags are an emerging threat.

Phase 1: Establish the TSCAP Baseline
- Update threat list with reprioritization of HME explosives
- Measure checkpoint’s current state of performance

Phase 2: Identify and prioritize capability gaps
- Confirm with IPT that there is a gap in detecting HMEs in checked baggage

Phase 3: Generate Alternatives

Phase 4: Analyze and Select Alternatives
- Determine each alternative’s impact on Trade Spaces
- Analyze each alternative’s impact on architecture
- Facilitate decision-making session to pick the best alternative

Phase 5/6: Document Operational Requirements & Handoff to Programs
- Document recommendation and preliminary analysis of alternatives for the program office
- Program office executes on procuring new technology
Technology Harmonization
International Harmonization Overview

TSA is working with our international partners to mitigate credible threats to transportation, to streamline technology priorities, and to align detection standards and testing methodologies.

Benefits of Harmonization:

Increases Security Effectiveness: Improves global aviation security baseline by raising minimum system performance levels to more effectively and efficiently mitigate threats to transportation in the US and abroad

Original Equipment Manufacturers (OEM) Efficiencies: Reduces industry development timelines and costs by focusing limited resources on a common set of global market requirements

Drives Innovation: Incentivizes OEMs to become more innovative to distinguish product lines from competition (i.e. larger threat libraries, increase sensitivity, lower operating costs and increase reliability)

Reduces Testing Burden: Harmonized detection standards and testing methodologies will potentially reduce demand on US/EU test centers through reciprocity and limiting assessments to unique requirements

Technology harmonization will occur in phases over a number of years.
- A commensurate ETD detection standard was signed in April 2014 – *Expected to be released through an ETD Industry Day in late FY14*

<table>
<thead>
<tr>
<th>Harmonization Step (TSA-EC)</th>
<th>ETD</th>
<th>AT/ACBS</th>
<th>BLS/LEDS</th>
<th>AIT/SS</th>
<th>EDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Exchange</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Threat Comparison</td>
<td>🟢</td>
<td>🟢</td>
<td>(In progress)</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Requirements/Specification</td>
<td>🟢</td>
<td>🟢</td>
<td>(In progress)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Testing Methodology</td>
<td>(In progress)</td>
<td>(In progress)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certification/Qualification/Approve for Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interested in learning more? Attend the **Opportunities for International Harmonization: Perspectives from TSA, CATSA and ECAC** roundtable on Wednesday, June 25th (1:45PM -3:15PM).
Questions
Checkpoint Solutions & Integration (CSI)
Overview

- Ensure the most technologically efficient and effective capabilities are available for screening passengers and carry-on baggage.
- Perform planning and execution of acquisition, procurement and strategic planning activities for all checkpoint technologies.
- Manages and prepare equipment recapitalization plans.
- Ensure compliance with acquisition guidelines and policy.
- Oversee planning and execution of budget activities.
- Coordinate with DHS S&T on R&D and detection activities.

The Passenger Screening Program (PSP)

The Threat Assessment Capabilities (TAC)

Security Technology Integrated Program (STIP)
CSI Division Priorities

- **Aviation Threat Detection**
 - Accelerate development of technologies that increase passenger convenience by minimizing the divest requirements of screening systems.
 - Enhance the performance of explosive trace detection (ETD) systems.
 - Enhance and augment checkpoint imaging and x-ray technologies to improve detection, increase adaptability and improve the passenger experience.
 - Develop and deploy effective Credential Authentication Technology (CAT).

- **Real Time Threat Assessment**
 - Enhance canine threat detection capabilities and broaden their operational utility.
 - Identify and optimize the factors that impact human performance in the screening of passengers and baggage to improve TSO performance.
 - Broaden behavior-based detection capabilities, screening capabilities and technologies.

- **Integration and Flexibility**
 - Develop standardized technology platforms, interfaces and data formats.
 - Accelerate OSC’s Security Technology Integrated Program (STIP).
CSI plans and executes acquisition, procurement and strategic planning activities for checkpoint screening programs. CSI ensures the most technologically efficient and effective capabilities are available for screening passengers and carry-on baggage.

Select CSI Capability Investments

- **AT-2:** Develop Tier II and Tier III.
- **AIT:** Procure AIT-2 systems in FY15; Develop Tier III.
- **ETD:** Procure additional ETD systems in late FY14. Establish new ETD contracts in FY15.
- **BLS:** Establish new BLS contracts in FY15.
- **EMD:** Begin recapitalization in FY15.
- **Boarding Pass Scanners:** Procure additional BPS in Summer 2014.
Risk Based Security Impacts on the Checkpoint

TSA’s Risk-Based Screening (RBS) initiatives are driving changes to checkpoint processes and technology needs, affecting the types and configuration of lanes and the quantities of both TSEs and FTEs required to operate the checkpoint.

- As TSA works to expand the numbers of travelers receiving expedited screening by the end of 2014, additional TSA Pre✓™ lanes are planned, reducing the number of standard lanes in operation. Technology needs differ between standard and TSA Pre✓™ lanes.
- TSA has established a working group to conduct predictive analysis of FOC numbers based on RBS goals, safety stock requirements, throughput capabilities, and lane configuration.

Actions to Date
- ETD Right Sizing effort
- Multiple trial CONOPs
- Analysis of airport drawings
- RBS driven policy/procedure changes

Result
- Modified FOC numbers to align with the changing checkpoint environment
- Revised PSP LCCE that aligns to RBS needs and goals

The Future
- Automated Real-Time Risk-Based Dynamic Passenger Screening
- Further Revisions to Technology FOCs

<table>
<thead>
<tr>
<th>AIT</th>
<th>AT2</th>
<th>BLS</th>
<th>ETD</th>
<th>CAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>930</td>
<td>2215</td>
<td>1660</td>
<td>2820</td>
<td>1450</td>
</tr>
</tbody>
</table>

*FOCs will be updated annually.
CSI Industry Partnership Priorities

Transparency
- **Increase Visibility into Requirements Development and Lifecycle Processes**
 - Continue to share draft RFPs and Test Plans – early and often – and encourage input and comments from industry stakeholders.

Improving Test Readiness
- **Optimize Qualification Data Package (QDP) Requirements**
- **Incremental Test Strategies**
- **Bolster Developmental Testing**

Purposeful Innovation
- **Focus Innovation for a Constrained Budget Environment**
 - Set aside money for purposeful innovation
 - Support rapid prototyping and field trials
Questions
Advanced Surveillance Program

Robert Pryor
Division Director, Intermodal
Advanced Surveillance Program (ASP)

ASP Mission

The ASP improves the security of our Nation's transportation infrastructure by promoting enhanced surveillance capabilities and providing industry partners and agencies with expertise and knowledge related to surveillance methods that are effective and suitable.

ASP provides funding to transportation facility operators for enhanced surveillance infrastructure and capabilities to support TSA requirements for security of critical areas.

Surveillance systems funded by ASP provide TSA staff and their partners with clear, detailed real-time images of critical areas covering security incidents and supporting resolution of liability claims.

Key Points:

- Facilitates and uses locally generated requirements within the parameters of the larger program authority.
- Requests to participate are initiated at the local level and processed according to a prioritization matrix.
- Supports Other Transaction Agreements (OTAs) with the transportation authorities; OTAs are not grants.
- The government gains access to systems supported by ASP funding.
Federal Security Director Feedback

"Having enhanced access to CCTV both at the checkpoints and in our baggage screening areas has proven to be a tremendous benefit to my overall screening operations."

— Michael Scott, AUS FSD

"The efforts of Ms. Lynn Sciascia and her team have helped strengthen our relationships and undoubtedly enhanced our security posture."

— Bill Switszer, STL FSD

"[The CCTV system] has proved invaluable and has allowed us to monitor incidents and even disprove passenger allegations which has kept us out of the national news."

— David Bassett, BDL FSD

Projects By Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Active</th>
<th>Completed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category X</td>
<td>16</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td>Category I</td>
<td>13</td>
<td>35</td>
<td>48</td>
</tr>
<tr>
<td>Category II</td>
<td>1</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Category III</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Category IV</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>84</td>
<td>115</td>
</tr>
</tbody>
</table>

Expended ASP ARRA OTA Funds

<table>
<thead>
<tr>
<th>Year</th>
<th>Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2 FY14</td>
<td>$55,710,084</td>
</tr>
<tr>
<td>FY11</td>
<td>$20M</td>
</tr>
<tr>
<td>FY12</td>
<td>$42M</td>
</tr>
<tr>
<td>FY13</td>
<td>$54M</td>
</tr>
<tr>
<td>OTA Total</td>
<td>$61,940,183</td>
</tr>
</tbody>
</table>

Total Expended ASP OTA Funds

<table>
<thead>
<tr>
<th>Year</th>
<th>Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY11</td>
<td>$85M</td>
</tr>
<tr>
<td>FY12</td>
<td>$132M</td>
</tr>
<tr>
<td>FY13</td>
<td>$164M</td>
</tr>
<tr>
<td>OTA Total</td>
<td>$280,668,698</td>
</tr>
</tbody>
</table>
Examples of how ASP meets TSA Operational Needs

Current State: A security incident delays operations, poses a significant threat, and increases costs to the transportation network.

- Security incident is detected
- No camera views or recordation available to TSA
- TSA alerts the LEO and search occurs with available information
- Terminal is evacuated
- Passengers are rescreened

Future State: ASP will allow TSA access to real time images, facilitating information sharing and reducing the threat.

- Security incident is detected
- Camera views available to TSA
- LEO and TSA receives real time image of threat
- Threat is more rapidly identified; no impact to passengers

Current State: Multiple camera views not located at critical checkpoints limits TSA’s ability to react to new threats quickly.

- Typical transportation video system does not include TSA views
- Connects to security/video only network
- Facility limited digital recordation
- No video access available to TSA
- Facility owned remote video display
- TSO requests recorded views and delivers to Security Operations Center

Future State: ASP will provide TSA visibility to operations from a common security platform increasing situational awareness.

- TSA views added to existing airport owned video system
- Connects to security/video only network
- Satisfy TSA recordation requirements
- Video access available to TSA
- TSA presence at facility monitoring center

Current State: Limited visibility into passenger throughput and screening activities causes significant delays to operations.

- Ticket counter queues
- No camera views or recordation available to TSA
- Checkpoint queue buildup
- Increased delays

Future State: ASP will provide TSOs visibility of passenger throughput to anticipate surge and allocate resources more quickly.

- Monitor ticket counter queues
- Camera views available to TSA
- Deploy TSOs as required more efficiently
- Reduced passenger delays

TSA Goal:
- Protect the transportation system from dangerous people and items that threaten its security
- Manage risks to critical transportation infrastructure
- Strengthen TSA operations and management
The Future

Examples of interoperability standards that can be included in future efforts:

- Open Network Video Interface Forum (ONVIF)

- Physical Security Interoperability Alliance (PSIA)
ASP Projects by Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Active</th>
<th>Both CP+CB</th>
<th>Only CP</th>
<th>Only CB</th>
<th>Completed</th>
<th>Both CP+CB</th>
<th>Only CP</th>
<th>Only CB</th>
<th>P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category X</td>
<td>16</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>16</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>Category I</td>
<td>13</td>
<td>10</td>
<td>3</td>
<td>-</td>
<td>35</td>
<td>27</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>Category II</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Category III</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Category IV</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>115</td>
</tr>
</tbody>
</table>

CP = Checkpoint
CB = Baggage
P = Perimeter
Air Cargo Security Technology Program

Robert Pryor
Division Director, Intermodal
Agenda

- Air Cargo Security Technology Program (ACSTP) Overview
- ACSTP Key Initiatives
- Air Cargo Screening Qualification Test (ACSQT) background
- Air Cargo Screening Qualification Test (ACSQT) Process overview
- Air Cargo Screening Technology List (ACSTL)
- ACSTL Status – Version 9.0 (Release Date of 05/07/14)
- Air Cargo ETD Test Bed
- Air Cargo Research and Development Working Group (ACRDWG)
- Advanced Surveillance Program Update
ACSTP Overview

• **Mission**
ACSTP evaluates and qualifies air cargo screening technologies to prevent explosive devices from being transported in air cargo on a passenger aircraft. Additionally, ACSTP aims to evaluate and qualify human detection technologies to prevent human intruders from invading cargo aircraft and using them as weapons of mass destruction.

• **Vision**
ACSTP strives to assess and test cargo screening technologies that are critical to the success of the Certified Cargo Screening Program (CCSP), the 100% Screening Mandate, and air cargo security at large. These technologies include cargo screening equipment, chain of custody technologies, and the management of a pipeline for future, more efficient and effective cargo security screening technologies.

• **Strategic Objectives**

<table>
<thead>
<tr>
<th>Near Term</th>
<th>Qualify viable air cargo screening technology that is currently in the marketplace and/or can be quickly modified to meet the requirements of the 100% cargo screening mandate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Term</td>
<td>Evaluate emerging air cargo screening technologies and provide feedback to vendors to enhance products for qualification and the development of refined technology standards.</td>
</tr>
<tr>
<td>Long Term</td>
<td>Collaborate through the DHS Capstone IPT with S&T to identify current technology gaps and support R&D efforts for future air cargo screening technology requirements.</td>
</tr>
</tbody>
</table>
ACSTP Key Initiatives

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Description</th>
<th>FY14 Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Cargo Screening Qualification Test (ACSQT)</td>
<td>The ACSQT process involves the demonstration, verification, and validation that a candidate cargo screening technology meets established TSA requirements and standards.</td>
<td>Approved 15 X-Ray, 4 ETD, and 1 EMD White papers. Currently Vetting for SSI and awaiting QDP Submissions. Evaluating 1 ETD whitepaper. Actively collecting field test data from 3 X-Rays and 1 ETD.</td>
</tr>
<tr>
<td>Innovative Technology Review Process (ITRP)</td>
<td>ITRP is a process for ACSTP to assess and evaluate innovative and emerging technologies that are still developing but not yet commercially available.</td>
<td>Developing long term R&D Roadmap.</td>
</tr>
<tr>
<td>Supply Chain Integrity Technology (SCIT)</td>
<td>ACSTP evaluates and develops standards for supply chain integrity technologies for certified cargo screening facilities to use when securing screened cargo from point of screening until loading aboard aircraft. Examples include tapes, ties, mechanical locks, and secure cartons.</td>
<td>Monitoring marketplace.</td>
</tr>
<tr>
<td>Data Analysis Reduction Team (DART)</td>
<td>DART processes and analyzes operational and technical data from regulated industry to streamline and integrate air cargo policy, procedures, and regulations.</td>
<td>Continuing to collect data on air cargo operations and evolving landscape.</td>
</tr>
</tbody>
</table>
ACSQT Overview

- Acts as the formal evaluation process by which screening devices are added to the Air Cargo Screening Technology List (ACSTL).

- The ACSTL is used by regulated parties to procure equipment necessary to meet the 100% air cargo screening mandate outlined in Public Law 110-53.

- Since April 2009, the program has evaluated 190 devices and authorized 109 for inclusion on the list.

- The current evaluation process is outlined on Fed Biz Ops Request For Information: HSTS04-12-SSN-CT5513

- TSA designed the ACSQT in order to provide ample submission opportunities, evaluation flexibility, and a workable test format.
<table>
<thead>
<tr>
<th>Process Area</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submission Process</td>
<td>• Allows for submissions anytime during the year, along with the opportunity to remediate shortfalls.</td>
</tr>
<tr>
<td>Evaluation Method</td>
<td>• Uses a customized qualification test process.</td>
</tr>
<tr>
<td></td>
<td>• Devices with a similar configuration already on the ACSTL will be added based on a qualification data packet (QDP) review, a physical configuration audit (PCA), and a preliminary image quality test.</td>
</tr>
<tr>
<td></td>
<td>• Devices from a manufacturer which already has another device on the ACSTL, or which is established internationally, will be added based on a QDP review, a PCA and an abbreviated on-site evaluation by an audit team.</td>
</tr>
<tr>
<td></td>
<td>• Devices from an unknown manufacturer will be added based on a QDP review, a PCA, and a full evaluation at a TSA designated facility.</td>
</tr>
<tr>
<td>Test Format</td>
<td>• Normally eliminates field testing for established manufacturers and designs. TSA still reserves the right to perform field testing at its discretion.</td>
</tr>
</tbody>
</table>
The ACSTL indicates the equipment that can be used by air carriers, indirect air carriers, independent cargo screening facilities, and shippers to screen for domestic and outbound air cargo.

- **The ACSTL includes three sections:**
 - **Qualified**
 - Equipment that has passed a formal TSA sponsored test process and is deemed qualified for screening operations. When procuring equipment, regulated parties are encouraged to select equipment from the qualified section.
 - **Approved**
 - Equipment that has been conditionally approved for screening operations and is currently undergoing or scheduled for field test activities. Technology is eligible for use, but may be removed if testing is not successful; users buy the technology at the risk of it potentially being removed at a future date.
 - **Grandfathered (no systems currently grandfathered)**
 - Equipment that is currently approved to screen cargo, but has a stated expiration date. This allows regulated parties who are using the grandfathered technology an opportunity to gradually phase out the equipment and transition to devices listed in the qualified or approved sections.

- **TSA publishes new versions of the ACSTL as new technologies become qualified through the ACSQT.**
- **A Non-SSI version of the ACSTL is available on tsa.gov, under Air Cargo’s Standards and Regulations.**
ACSTL Status

(As of Version 9.0)

X-Ray
- **Qualified:** 80 X-Ray devices from 7 OEMs
 - 28 Capacity A systems, 29 Capacity B systems, 23 Capacity C systems
- **Approved:** 3 X-Ray devices from 2 OEMs
 - 2 Capacity A systems, 1 Capacity B system

Explosives Trace Detection
- **Qualified:** 3 ETD devices from 3 OEMs

Electronic Metal Detection
- **Qualified:** 6 EMD devices from 3 OEMs

Explosives Detection Systems
- **Qualified:** 15 EDS devices from 3 OEMs

1 See appendix for capacity descriptions
Air Cargo Data Analysis (DART)

Iterative data analysis process that informs decision-making to improve security within air cargo transportation

Data
- Current: Collect ETD testbed data from all participants
- Next Steps: Collect industry and test bed data from TSA regulated parties

Insight
- Analyze data to uncover potential algorithm improvements
- Begin forensic analysis on certain machines currently used in the field

Action
- Work with stakeholders to improve air cargo transportation security
The ACSTP is leading the establishment of an Air Cargo Research and Development Working Group (ACRDWG)

The Air Cargo R&D Working Group will:

- Serve as the primary DHS/TSA vehicle for gathering sector-focused R&D Capability Gaps across aviation transportation security partners.

- Engage federal, state, local, and private sector stakeholders, including air carriers, freight forwarders, shippers, other TSA offices, DHS S&T, DOT and DOD.

- Capture and consolidate industry’s capability needs to inform DHS and TSA’s R&D.
Agenda

• EBSP Overview
• EBSP Key Priorities
• Recapitalization and Optimization
• PGDS Updates
• EDS-CP
• Key Initiatives Update
• Way Forward
EBSP is a mixed lifecycle acquisition program that identifies, tests, procures, deploys, and sustains equipment that detects concealed explosives in checked baggage. EBSP utilizes both Explosives Detection Systems (EDS) and Explosives Trace Detection (ETD) technologies for checked baggage screening.
The Electronic Baggage Screening Program (EBSP) is currently focused on a number of key priorities that will enable the program to flex with TSA’s mission and improve TSA’s ability to rapidly respond to emerging threats.

Recapitalization & Optimization
- Successful execution of recapitalization and optimization relies on visibility to, input from, and coordination with airports and Industry.
- Technical obsolescence, which is the inability to reach the next level of detection, will be a main driver for ranking future projects.

EDS Competitive Procurement
- EBSP’s rolling Qualified Products List (QPL) acquisition strategy provides an open opportunity for vendors to qualify EDS.
- TSA deployed its first EDS-CP unit in June 2013.
- TSA anticipates the award of Medium Speed EDS contracts before the end of FY14, and High Speed EDS contract(s) before the end of FY15.

Detection Upgrades
- TSA will complete EDS upgrades to the 2010 Detection Standard before the end of FY14.
- Original Equipment Manufacturers (OEMs) are working with TSA to develop algorithms for legacy and new EDS that meet the 2012 Detection Standard.

Technology Initiatives
- EBSP is in the process of developing a Risk-Based Security (RBS) strategy that aligns with the Agency’s priorities for risk based screening and leverages successes in Checkpoint
- Implementation of a Rapid Algorithm Development effort that can help the Agency rapidly respond to emerging threats.
Recapitalization and Optimization

FY14 Projects and Future Project Selection

In FY13, EBSP successfully obligated **30 Design OTAs** and **30 Facility Modification OTAs** across **38 airports**; significantly fewer OTAs are anticipated in FY14 due to funding needs to complete current projects.

FY14 Projects

- Approximately $78M has been budgeted for OTAs in FY14. This figure is subject to change based on cost validations and Office of Acquisition negotiations.
- EBSP planned to pursue two OTAs in 2014, with one OTA obligated to OGG in 13-Dec, and DEN outstanding.
 - While some airports were awarded Design OTAs in FY13, TSA will only pursue Facility Modification OTAs with those airports in FY14 if funding is available.
 - Airports will be notified accordingly.

Future Projects

- Funding for optimization efforts is only considered after cost effectiveness analysis is completed to determine if TSA should invest in the project and what level of funding TSA could contribute, if funds are available.
 - If the results of the analysis are unsatisfactory, TSA will continue to support 100% of the costs of the recapitalization project, as previously agreed upon.
- A Return on Investment (ROI) approach will be utilized in collaboration with airports to determine the cost effectiveness of optimization projects.
 - A positive ROI must be realized within 10 years to proceed with an optimization project without additional funding required from the airport.
 - Should an airport choose to pursue optimization instead of recapitalization, airports are responsible for covering all costs beyond the maximum amount TSA can pay.

Operational deficiency will be the driver for future recapitalization and optimization projects.
Recapitalization and Optimization

Airport and Industry Engagement

The majority of the initial recapitalization planning process is handled by TSA, however airports and Industry may be asked to participate in site evaluation, cost-effectiveness analysis for optimization, and/or funding of airport projects.

Site Evaluation

While TSA collects data and prioritizes units for recapitalization, airports will be asked to participate in planning efforts, if necessary, and to facilitate a site visit for TSA-OSC and contractor personnel.

<table>
<thead>
<tr>
<th>100% Funding</th>
<th>Cost Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>• TSA will pay for 100% of the allocable cost associated with recapitalization of equipment.</td>
<td>• Optimization efforts approved by TSA will include necessary cost share between TSA and the airport for allocable costs and the recapitalization cost.</td>
</tr>
<tr>
<td>• No cost share will be required from airports for recapitalization projects.</td>
<td>• Large and medium hub airports will be responsible for a 10% cost share of allowable costs, up to the not-to-exceed dollar value of each project.</td>
</tr>
<tr>
<td></td>
<td>• Small/non-hub airports will be responsible for a 5% cost share of allowable costs, up to the not-to-exceed dollar value of each project.</td>
</tr>
</tbody>
</table>
The Planning Guidelines and Design Standards version 4.2 was published on May 5th, 2014; some comments were addressed in the most recent version, with a more significant overhaul anticipated for Version 5.0, estimated for late CY2014 release.

PUBLISHED PGDS v4.2

- Public comments on Version 4.1 received from 9/15/2011 through 6/1/2012 and internal TSA stakeholders also provided inputs:
 - OSC Engineering generated 159 response documents addressing all industry changes and comments
- Stakeholders determined that a comprehensive evaluation of the PGDS is necessary prior to developing Version 5.0
- Intermediate Version 4.2 addressing near-term needs was published on 5/5/2014
 - Incorporates all industry comments that were accepted by TSA
 - New content added by TSA was reviewed by Industry prior to publication
- Appendix F was removed and published as a separate policy document addressing Checked Baggage Inspection System (CBIS) funding

DEVELOPING PGDS v5.0

- New forum established for collaboration between TSA and Industry on all future PGDS rewrites, starting with the significant update to PGDS Version 5.0
 - A PGDS Working Group comprised of Industry representatives and stakeholders has been formed and is meeting quarterly
 - A Technical Review Committee comprised of TSA stakeholders is currently being implemented to facilitate the update and management of the PGDS in coordination with industry partners
- Estimated release of PGDS Version 5.0 is the end of CY14
EDS Competitive Procurement (EDS-CP)
Rolling QPL and Detection Standard Updates

Vendors seeking entry to the Qualified Products List (QPL) should take note of the following recent changes:

EDS-CP Rolling QPL Changes

- Certification Readiness Testing (CRT) has been removed from the EDS certification process, which should save both TSA and vendors time and resources.
- Upon successful completion of required testing milestones, EDS will be placed on the QPL.
 - Previously, vendors were provided windows of opportunity within a specified timeframe to submit their certified systems for qualification.
 - These windows no longer exist, and an EDS may enter the certification and qualification process at any time.

Detection Upgrades

- In June 2014, TSA announced that as of January 1, 2015, all EDS must meet the 7.2 detection standard to enter testing.
- All EDS will be upgraded to the 2010 Detection Standard before the end of FY14.
 - The next round of EDS procurements and upgrades will be to the 2012 Detection Standard.
 - Deployment of these upgrades are expected to begin in late FY14.

Any EDS that is currently in the testing process (including Certification) can continue through the testing process; any EDS that has not yet entered Certification by January 1, 2015 must be compliant with the 7.2 detection standard.
EBSP is currently supporting two key technical initiatives that will improve TSA’s overall security posture and ability to respond to emerging threats:

Risk Based Security (RBS)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In May 2014, TSA released its Transportation Security Strategic Capability Investment Plan, which offered a high level overview of the Program’s potential implementation of RBS for baggage screening. Key potential capabilities include:</td>
</tr>
<tr>
<td>• Enabling technology connected to Secure Flight that provides both credential authentication and retrieval of the passenger’s risk assessment in near-real time;</td>
</tr>
<tr>
<td>• Networking of capabilities through the Security Technology Integrated Program (STIP);</td>
</tr>
<tr>
<td>• Optimization of existing solutions through the development of component technologies to “read” risk of bags in the BHS; and</td>
</tr>
<tr>
<td>• Enhancements to EDS that enable rapid adjustment of the security posture.</td>
</tr>
</tbody>
</table>

Rapid Algorithm Development (RAD)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBSP is working closely with EDS vendors to implement a rapid algorithm development model, with vendors anticipated to develop and deliver a new algorithm within 10 weeks with a goal of <10% false alarm rates. Key objectives include:</td>
</tr>
<tr>
<td>• Establishing a model for rapid algorithm development that can be utilized for other technologies;</td>
</tr>
<tr>
<td>• Improving TSA’s ability to rapidly respond to emerging or immediate threats with new detection capabilities</td>
</tr>
<tr>
<td>• Reducing existing development timeline and establishing a testing model that supports accelerated capability delivery</td>
</tr>
</tbody>
</table>

Both RBS and RAD will enable security agility for checked baggage screening and lay the foundation for future capability development.
Way Forward
What’s Next for EBSP?

RECAPITALIZATION & OPTIMIZATION

- Efficient execution and close collaboration with airports, airlines, and the security industry is critical to the success of recapitalization and optimization projects.
- EBSP will continue working with airports that received both their Design and Facility Modification OTAs in FY13 to bring those projects to completion.
- Future recapitalization projects will be ranked on new criteria related to technical obsolescence. These projects will be initiated as funding is available.

DETECTION UPGRADES

- Original Equipment Manufacturers (OEMs) are working with TSA to develop algorithms for legacy and new EDS that meet enhanced detection standards.
- All EDS must meet the 7.2 detection standard by January 1, 2015 to begin testing; EDS that cannot meet this standard cannot enter the certification process after January 1.

DETECTION UPGRADES

- TSA anticipates the award of MSEDS contracts before the end of FY14 and HSEDS contracts before the end of FY15.
Agenda

- Introduction / FY14 Goals and Objectives
- Test & Evaluation Challenges and Initiatives
- Vendor Collaboration
- Discussion of the Third Party Testing Concept
- Introduction of the Test & Evaluation Governance Board
- Other Current & On-going Efforts
- Participant Discussion and Q&A Session
Introduction

As part of TSA’s goal of enhancing organizational efficiency, the Office of Security Capabilities is working to improve the execution of mission operations, with the intent of delivering capabilities to the field faster. Current Test & Evaluation processes are being examined and enhanced as part of this Agency-wide focus.

Goals and Objectives

- Accelerate the process of delivering new capabilities to the user that improve effectiveness and efficiency
- Improve collaboration and transparency with vendors early on in the acquisition and test processes
- Establish more open coordination channels with industry, with the purpose of providing context and guidance beyond formal functional requirements documents
- Provide tools and processes to vendors and industry to facilitate more mature systems entering the TSA T&E Process
T&E Challenges

TSA OSC’s Operations Support Division has identified challenges across the Acquisition and Test & Evaluation lifecycle, yielding opportunities to enhance the method through which the organization works with industry to bring capabilities to the field.

<table>
<thead>
<tr>
<th>Pre-Test</th>
<th>Test & Evaluation</th>
<th>Post-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Analysis of past T&E data to feed the requirements process and determine appropriate risk mitigation strategies</td>
<td>• Strong collaboration and communication during T&E execution (both internally and externally)</td>
<td>• Collaboration with vendors / data sharing for improved test preparation</td>
</tr>
<tr>
<td>• Optimal Operational Test sites</td>
<td>• Configuration Management process improvement</td>
<td>• Implementation of policy covering new processes for response to test failures</td>
</tr>
<tr>
<td>• Evaluation of technology test readiness (QMP)</td>
<td>• Clear external understanding of the TSA testing process</td>
<td></td>
</tr>
</tbody>
</table>
Initiative: Vendor Collaboration

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear external understanding of the TSA testing process</td>
<td>Ongoing revision of T&E Process Guide</td>
</tr>
<tr>
<td></td>
<td>Sharing of test plans and Communications SOP (over 80 documents shared to date)</td>
</tr>
<tr>
<td>Collaboration with vendors / data sharing for improved test preparation</td>
<td>Development of Vendor Communication SOP</td>
</tr>
<tr>
<td></td>
<td>Improved tracking of document sharing</td>
</tr>
<tr>
<td>Evaluation of technology test readiness (QMP)</td>
<td>Revision / enhancement to management of process</td>
</tr>
<tr>
<td>Implementation of policy covering new processes for response to test failures</td>
<td>Development of possible incentives / penalties for inclusion in future contracts</td>
</tr>
<tr>
<td>Optimal Operational Test sites</td>
<td>Standing up permanent test sites</td>
</tr>
</tbody>
</table>
TSA plans to streamline the T&E process over the next 12 months using a two-phased approach that will introduce Third Party Testing (TPT) into the T&E Process.

Phase 1 - Require TPT to re-enter QT

Limiting the total number of OEM attempts to clear QT to two (2) per Transportation Security Equipment (TSE) and after any significant failure, re-entering QT will be conditional upon the use of TPT.

Phase 2 - Use of TPT in Support of QDP

Encouraging Original Equipment Manufacturers (OEMs) to use a Third Party Tester (TPTer) prior to submission of their QDP, resulting in a more mature TSE and a stronger and higher quality QDP.

Results

The efficiencies gained by OEMs adopting TPT can:
- Accelerate implementation of schedules
- Reduce procurement delays and time-to-market
- Improve return on investment and decrease overall cost of development
Third Party Testing business models:

<table>
<thead>
<tr>
<th>Trust But Verify</th>
<th>View, Witness, and Accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: TPTers conduct the test and TSA verifies the test methodology and results against required QT test criteria</td>
<td>Description: TSA has a representative present during TPT activities</td>
</tr>
<tr>
<td>Benefit: Reduces TSA testing time in QT and the OEM’s reliance on TSA testing resources</td>
<td>Benefit: Enables faster communication and feedback that can be used by the OEM to enhance technology development</td>
</tr>
</tbody>
</table>

Evaluation Criteria and Acceptance Process: Following the use of a Third Party Testing entity, the vendor will submit a data package for evaluation by TSA OSC

Evaluation Factor Inputs
- Was a 3rd party tester used?
- What certifications does the TPT have?
- Adequacy of the TPT test plan
- Results of the testing
- Statistical significance of the data
- Onsite validation of testing by TSA Representative

Flexible Test Response
- Full acceptance of test results
- Partial verification of test results
- Complete Retest

Evaluation of Vendor data package to determine level of follow-up testing
Initiative: Establish Governance Board

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of technology test readiness</td>
<td>Establish a “Test Governance Board” to oversee all T&E Strategy (details below)</td>
</tr>
<tr>
<td>Strong collaboration and communication during T&E execution (both internally and externally)</td>
<td></td>
</tr>
<tr>
<td>Implementation of policy covering new processes for response to test failures</td>
<td></td>
</tr>
</tbody>
</table>

Function of Board

The Board will accomplish its objectives by performing the following activities:

1. *Providing executive direction for OSC T&E strategies*
2. *Providing a forum to engage, consult, and ensure collaboration and consistent messaging*
3. *Ensuring OSC T&E activities and strategies meet overall TSA goals and initiatives*
4. *Providing direction on improvements to the OSC acquisition program test and evaluation process.*
5. *Overseeing and providing strategic direction to the work teams focused on OSC’s T&E strategic initiatives*
TSA OSC’s T&E FY14 Budget is approximately $50 million.

<table>
<thead>
<tr>
<th>Project/Initiative</th>
<th>Overview</th>
</tr>
</thead>
</table>
| On-going Testing | AIT-2, EDS-CP, AT-2, CAT, ETD
To date, TSIF has conducted 142 test events, 30 demonstrations, and 32 tours since the beginning of FY14
To date, completed 347 FAT and 359 SAT since the beginning of FY14 |
| RBS | Passenger Screening Security Effectiveness
Concept Exploration Testing |
| T&E Improvements | TI&O ISO Certification
Test Article Program
Test & Evaluation Process Guide
TEMNet |
Acquisitions

Holly Hamilton Bolger
Division Director (Acting), Security Technology Acquisition Division
OSC has identified five strategic capability investment areas over the next five years:

- Aviation Threat Detection
- Real Time Threat Assessment
- Integration and Flexibility
- Systems Engineering and Governance
- Intermodal Threat Detection

OSC will manage its investment in capability development and innovation by balancing pioneering efforts with immediate capability demands, and plans to manage its portfolio of investments as follows:

- **70%** of investments targeting “Core” capabilities, addressing known threats and inefficiencies
- **20%** of investments targeting “Adjacent” capabilities, addressing emerging threats and creating new efficiencies
- **10%** of investments targeting “Transformational” capabilities, managing an integrated and dynamic system
OSC’s FY13 industry engagement spanned 20 industries across 388 unique entities located in 176 congressional districts in 41 states. This included 81 original equipment manufacturers, 88 airport authorities, and 81 small businesses.

OSC’s engagement spans a variety of industry types:

- **31%** Original Equipment Manufacturer
- **21%** Professional Services
- **15%** Airport Authorities
- **5%** Information Technology
- **28%** Other (e.g., Architecture Firms, R&D, Academic)

Engagement Purpose by Contractual Status

- **System Upgrade**
- **Program Support**
- **Airport Design**
- **Testing and Evaluation**
- **Strategic Advising**
- **Outreach**
- **Market Research**
- **Capabilities Development**
- **PGDS**
- **Vendor Showcase**

OSC Engagement by Program Area

- Mission Analysis 7%
- Intermodal 17%
- Deployment 3%
- Checkpoint Technologies 19%
- Checked Baggage Technologies 26%
- Business Operations 4%
- Operations Support 8%
- OSC-Wide 16%
OSC Acquisition Update

Transportation Security Deployment Services (TEDS – System Integration (SI) recompete)

- June 2014
- July 2014
- Dec 2014

Air Cargo, Intermodal, & Surface SI recompete

- Aug 2014
- Jan 2015
- Jun 2015

TSIF SI Support

- Jul 2014
- Sep 2014
- Mar 2015

EBSP Services (SPSS)

- May 2014
- Jun 2014
- Sep 2014

Note: Dates subject to change

- RFI Release Date
- RFP Release Date
- Award
OSC Acquisition Update (cont.)

Components of TESS\(^1\):
- TSIF Testing
- Acceptance Testing
- Operational Test & Evaluation (OT&E)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry Day</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottle Liquid Scanner (BLS)

<table>
<thead>
<tr>
<th></th>
<th>Aug 2014</th>
<th>Nov 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New QPL opens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explosive Trace Detector (ETD)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New QPL opens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Each component is a separate action

* RFI Release Date
* RFP Release Date
* Award

Note: Dates subject to change
Ongoing Procurement Initiatives

- Focus on industry engagement
- Increasing the number of awards to small businesses
- DHS strategically sourced vehicles will be used as much as possible, but will be evaluated every time for efficiency and effectiveness
- Best value, trade-off source selections will become the norm for both equipment and services, using technical prompts and discriminators vice generic technical proposals
- Smaller service requirements awarded "just in time" instead of larger, "draw down" structures
- Continued progression to fixed priced requirements
- Continued efforts to increase competition on equipment
- Obtaining technical data packages and rights to technical data
Deployment

Peter McVey
Division Director (Acting), Deployment

Transportation Security Administration
Agenda

- Deployment Division Overview
- Deployment Goals
- Deployment Priorities
- Opportunities
- Questions
Deployment Division Overview

The Deployment Division deploys equipment for both Checkpoint and Checked Baggage programs. Deployment was created from CPTD and CBTD in order to consolidate expertise for deploying and integrating systems into the field.

- **Deployment**
 - Coordinate across stakeholders for the deployment of technology to federalized airports
 - Support checkpoint design
 - Support integration and training of field operations with transportation security equipment
 - Manage warehouse operations and logistics

- **Checkpoint**
 - Solutions engineering
 - Program scheduling
 - Requirements development
 - Lifecycle cost estimates
 - Funding and obligations management
 - DT&E
 - OT&E

- **Checked Baggage**
 - Program Scheduling
 - Requirements Development
 - Funding and Obligation Management
 - DT&E
 - OT&E
 - Project prioritization
 - Initial system design phases
Deployment Division Overview Cont’d.

- Deployments are organized through three geographic regions: East, Central, and West.
- Deployment Coordinators (DC) manage the movement and installation of TSE.
- Integration Coordinators (IC) manage the implementation and training of field operations.

- Operations Branch supports acquisition and contract management functions, checkpoint design, and asset management.
- Engineering supports the integration and operationalization of technology.

West Region Branch Manager
- Paul Wisniewski
- Roland Hanson
- CP IC: Sam Carrasquillo
- CR IC: Steve McQueen
- CR DC: Joe Kuchta (acting)
- CB DC: vacant

Central Region Branch Manager
- Alberto Camacho
- Jeff Delaney
- CP IC: Fala Walton
- CR IC: Vince Ortega
- CB DC: Tony Marshall

East Region Branch Manager
- Paul Wisniewski (acting)
- CP DC: Harold Hackstall
- CP IC: Cornel Walton
- CR IC: Brian Zimmerman
- CB IC: John Reed
- CB DC: Terry Spradlin

Operations Branch Manager
- Khalid Haider
- Deployment Analyst: Connie White
- Property Analyst: Annette Cuyler
- Safety COR: Greg Baron
- Checkpoint Design: Dale Mason
- Duress Alarm Analyst: Mike Spearman
- Warehouse Analyst: JC Walker
- ReMAG COR: Matt Gilkeson
- Checkpoint Design: Jennifer Dermody
- BLS Analyst: Juanita Jeter
- Deployment Analyst: Dreama Cathey

Engineering Team Supervisor (posted)
- Gen. Engineer: Mike Benedetti
- Gen. Engineer: Jim Murray
- Gen. Engineer: Robert Ratcliffe
- Gen. Engineer: Alex Fraguada
- Gen. Engineer (vacant)
Deployment Division Priorities

Improve Stakeholder Communications

Accomplishments
- Enhanced Site Visit and Deployment Installation Coordination
- Conduct Lessons Learned to solicit input from the field and enhance Deployment processes
- Initiated field surveys to solicit user input on key Deployment processes

Opportunities
- Increase end user awareness of upcoming TSA initiatives
- Institutionalize knowledge gained from regular lessons learned conferences
- Use survey feedback to inform changes to Deployment processes
Deployment Division Priorities

Expedite Processes

<table>
<thead>
<tr>
<th>Accomplishments</th>
<th>Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Working to merge AT and AIT movements to find efficiencies and minimize the disruption airport operations.</td>
<td>• Explore efficiencies with additional joint deployments of technologies</td>
</tr>
<tr>
<td>• Created an Integrated Master Schedule (IMS) provide schedule forecasting for enhanced stakeholder communication and Deployment Requirements Definition; currently used to support integrated checked baggage projects with the goal to roll out to other deployment technologies</td>
<td>• Define enhanced coordination strategies for phasing Recap and Optimization projects</td>
</tr>
<tr>
<td>• Established the Governance Board on a bi-weekly basis to unite the Deployment Division, Checked Baggage Technology Division (CBTD), and Office of Acquisition to present issues to the leadership for finalization of decisions regarding funding, scheduling/tracking, and project validity</td>
<td>• Further adopt IMS tools for additional technologies</td>
</tr>
<tr>
<td>– Created a repeatable process that is currently being evaluated for rollout to other coordination teams</td>
<td>• Continue to use the Governance Board framework to expedite and inform management decisions and prevent program delays</td>
</tr>
<tr>
<td>– Obligation of over $600M in FY13 Facility Modification OTAs supporting Recapitalization efforts across 29 airports</td>
<td></td>
</tr>
</tbody>
</table>
Standardize Deployment Procedures

Accomplishments

- Developed a Master Deployment Plan to display a comprehensive view of deployment schedules, risks, methodologies, statuses, and strategies for both Checkpoint and Checked Baggage technologies.
- Revised the Checkpoint Design Guide which establishes the design process, guidelines, and approval for checkpoint construction projects.
- Expanded Deployment Methodology Documentation to define and standardize processes for allocating and deploying specific technologies.

Opportunities

- Further enhance the Master Deployment Plan with additional data and regular updates.
- Communicate Checkpoint Design Guide best practices with industry.
Deployment Priorities (Checkpoint)

<table>
<thead>
<tr>
<th></th>
<th>FY14 Q3</th>
<th>FY14 Q4</th>
<th>FY15 Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APR</td>
<td>MAY</td>
<td>JUN</td>
</tr>
<tr>
<td>BLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLS Smiths Deployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLS CE1A Reallocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 550 Smiths Deployments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT Rapsican Redeployments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>560 Acquisition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redeployments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPS Acquisition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT Acquisition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duress Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duress Alarm Deployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETD/BLS Cabinet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabinet Deployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETD/BLS Cabinet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT Full Capability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smiths Full Capability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapsican Full Capability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIP/GR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGR for Remaining Airports</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes/Assumptions:
- All timeline information is based on estimations and assumptions.
- Planning Phase includes any design, construction, or scheduling requirements.
- Execution Phase includes TSE movement, installation, and integration work.
- AT Full Capability rollout timeline is driven by OSO.
Deployment Priorities (Checked Baggage)

<table>
<thead>
<tr>
<th></th>
<th>FY14 Q3</th>
<th>FY14 Q4</th>
<th>FY15 Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APR</td>
<td>MAY</td>
<td>JUN</td>
</tr>
<tr>
<td>In-line Recap and Optimization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-9800 SEIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eXaminer 6700 3DX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eXaminer 6700 3DX-ES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-9800 SEIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eXaminer 6700 3DX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Line Deployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-9800 SEIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT-80DR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eXaminer 6700 3DX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eXaminer 6700 3DX-ES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standalone Deployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT-80DR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-5800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT-80DR+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-5500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standalone Recap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT-80DR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT-80DR+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Planning Phase
- Execution Phase

Note: The chart indicates the deployment priorities and phase tracking for different baggage screening equipment from FY14 Q3 to FY15 Q1.
Questions